Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
1.
biorxiv; 2024.
Preprint in English | bioRxiv | ID: ppzbmed-10.1101.2024.04.05.588359

ABSTRACT

Antigenic assessments of SARS-CoV-2 variants inform decisions to update COVID-19 vaccines. Primary infection sera are often used for assessments, but such sera are rare due to population immunity from SARS-CoV-2 infections and COVID-19 vaccinations. Here, we show that neutralization titers and breadth of matched human and hamster pre-Omicron variant primary infection sera correlate well and generate similar antigenic maps. The hamster antigenic map shows modest antigenic drift among XBB sub-lineage variants, with JN.1 and BA.4/BA.5 variants within the XBB cluster, but with five to six-fold antigenic differences between these variants and XBB.1.5. Compared to sera following only ancestral or bivalent COVID-19 vaccinations, or with post-vaccination infections, XBB.1.5 booster sera had the broadest neutralization against XBB sub-lineage variants, although a five-fold titer difference was still observed between JN.1 and XBB.1.5 variants. These findings suggest that antibody coverage of antigenically divergent JN.1 could be improved with a matched vaccine antigen.


Subject(s)
Infections , Severe Acute Respiratory Syndrome , COVID-19
2.
biorxiv; 2023.
Preprint in English | bioRxiv | ID: ppzbmed-10.1101.2023.10.08.561395

ABSTRACT

Lethal COVID-19 causation most often invokes classic cytokine storm and attendant excessive immune signaling. We re-visit this question using RNA sequencing in nasopharyngeal and 40 autopsy samples from both COVID-19-positive and negative individuals. In nasal swabs, the top 100 genes expressed, and significantly correlated with COVID-19 viral load, indeed include many canonical innate immune genes. However, 22 much less studied \"non-canonical\" genes are found and despite the absence of viral transcripts, subsets of these are upregulated in heart, lung, kidney, and liver, but not mediastinal lymph nodes. An important regulatory potential emerges for the non-canonical genes for over-activating the renin-angiotensin-activation-system (RAAS) pathway, resembling this phenomenon in hereditary angioedema (HAE) and its overlapping multiple features with lethal COVID-19 infections. Specifically, RAAS overactivation links increased fibrin deposition, leaky vessels, thrombotic tendency, and initiating the PANoptosis death pathway, as suggested in heart, lung, and especially mediastinal lymph nodes, and a tight association mitochondrial dysfunction linked to immune responses. For mediastinal lymph nodes, immunohistochemistry studies correlate showing abnormal architecture, excess fibrin and collagen deposition, and pathogenic fibroblasts. Further, our findings overlap these for COVID-19 infected hamsters, C57BL/6 and BALB/c mouse models, and importantly peripheral blood mononuclear cell (PBMC) and whole blood samples from COVID-19 patients infected with early alpha but also later COVID-19 omicron strains. We thus present cytokine storm in lethal COVID-19 disease as an interplay between upstream immune gene signaling producing downstream RAAS overactivation with resultant severe organ damage, especially compromising mediastinal lymph node function.


Subject(s)
Mitochondrial Diseases , Angioedemas, Hereditary , COVID-19 , Inflammation
3.
biorxiv; 2022.
Preprint in English | bioRxiv | ID: ppzbmed-10.1101.2022.07.05.498883

ABSTRACT

The rapid emergence of new SARS-CoV-2 variants challenges vaccination strategies. Here, we measured antigenic diversity among variants and interpreted neutralizing antibody responses following single and multiple exposures in longitudinal infection and vaccine cohorts. Antigenic cartography using primary infection antisera showed that BA.2, BA.4/BA.5, and BA.2.12.1 are distinct from BA.1 and closer to the Beta cluster. Three doses of an mRNA COVID-19 vaccine increased breadth to BA.1 more than to BA.4/BA.5 or BA.2.12.1. Omicron BA.1 post-vaccination infection elicited antibody landscapes characterized by broader immunity across antigenic space than three doses alone, although with less breadth than expected to BA.2.12.1 and BA.4/BA.5. Those with Omicron BA.1 infection after two or three vaccinations had similar neutralizing titer magnitude and antigenic breadth. Accounting for antigenic differences among variants of concern when interpreting neutralizing antibody titers aids understanding of complex patterns in humoral immunity and informs selection of future COVID-19 vaccine strains.


Subject(s)
Infections , Ossification of Posterior Longitudinal Ligament , COVID-19
4.
biorxiv; 2021.
Preprint in English | bioRxiv | ID: ppzbmed-10.1101.2021.12.22.473880

ABSTRACT

The rapid spread of the highly contagious Omicron variant of SARS-CoV-2 along with its high number of mutations in the spike gene has raised alarm about the effectiveness of current medical countermeasures. To address this concern, we measured neutralizing antibodies against Omicron in three important settings: (1) post-vaccination sera after two and three immunizations with the Pfizer/BNT162b2 vaccine, (2) convalescent sera from unvaccinated individuals infected by different variants, and (3) clinical-stage therapeutic antibodies. Using a pseudovirus neutralization assay, we found that titers against Omicron were low or undetectable after two immunizations and in most convalescent sera. A booster vaccination significantly increased titers against Omicron to levels comparable to those seen against the ancestral (D614G) variant after two immunizations. Neither age nor sex were associated with differences in post-vaccination antibody responses. Only three of 24 therapeutic antibodies tested retained their full potency against Omicron and high-level resistance was seen against fifteen. These findings underscore the potential benefit of booster mRNA vaccines for protection against Omicron and the need for additional therapeutic antibodies that are more robust to highly mutated variants. One Sentence Summary Third dose of Pfizer/BioNTech COVID-19 vaccine significantly boosts neutralizing antibodies to the Omicron variant compared to a second dose, while neutralization of Omicron by convalescent sera, two-dose vaccine-elicited sera, or therapeutic antibodies is variable and often low.


Subject(s)
COVID-19
5.
researchsquare; 2020.
Preprint in English | PREPRINT-RESEARCHSQUARE | ID: ppzbmed-10.21203.rs.3.rs-105768.v1

ABSTRACT

Sensitive and specific SARS-CoV-2 antibody assays remain critical for community and hospital-based SARS-CoV-2 surveillance. Here, we developed and applied a multiplex microsphere-based immunoassay (MMIA) for COVD-19 antibody studies that incorporates spike protein trimers of SARS-CoV-2, SARS-CoV-1, MERS-CoV, and the seasonal human betacoronaviruses, HCoV-HKU1 and HCoV-OC43, that enables measurement of off-target pre-existing cross-reactive antibodies. The MMIA performances characteristics are: 98% sensitive and 100% specific for human subject samples collected as early as 10 days from symptom onset. The MMIA permitted the simultaneous identification of SARS-CoV-2 seroconversion and the induction of SARS-CoV-2 IgG antibody cross reactions to SARS-CoV-1 and MERS-CoV. Further, synchronous increases of HCoV-OC43 IgG antibody levels was detected with SARS-CoV-2 seroconversion in a subset of subjects for whom early infection sera were available prior to their SARS-CoV-2 seroconversion, suggestive of an HCoV-OC43 memory response triggered by SARS-CoV-2 infection.


Subject(s)
Memory Disorders , COVID-19
6.
medrxiv; 2020.
Preprint in English | medRxiv | ID: ppzbmed-10.1101.2020.10.14.20207050

ABSTRACT

With growing concern of persistent or multiple waves of SARS-CoV-2 in the United States, sensitive and specific SARS-CoV-2 antibody assays remain critical for community and hospital-based SARS-CoV-2 surveillance. Here, we describe the development and application of a multiplex microsphere-based immunoassay (MMIA) for COVD-19 antibody studies, utilizing serum samples from non-human primate SARS-CoV-2 infection models, an archived human sera bank and subjects enrolled at five U.S. military hospitals. The MMIA incorporates prefusion stabilized spike glycoprotein trimers of SARS-CoV-2, SARS-CoV-1, MERS-CoV, and the seasonal human coronaviruses HCoV-HKU1 and HCoV-OC43, into a multiplexing system that enables simultaneous measurement of off-target pre-existing cross-reactive antibodies. We report the sensitivity and specificity performances for this assay strategy at 98% sensitivity and 100% specificity for subject samples collected as early as 10 days after the onset of symptoms. In archival sera collected prior to 2019 and serum samples from subjects PCR negative for SARS-CoV-2, we detected seroprevalence of 72% and 98% for HCoV-HKU1 and HCoV-0C43, respectively. Requiring only 1.25 uL of sera, this approach permitted the simultaneous identification of SARS-CoV-2 seroconversion and polyclonal SARS-CoV-2 IgG antibody responses to SARS-CoV-1 and MERS-CoV, further demonstrating the presence of conserved epitopes in the spike glycoprotein of zoonotic betacoronaviruses. Application of this serology assay in observational studies with serum samples collected from subjects before and after SARS-CoV-2 infection will permit an investigation of the influences of HCoV-induced antibodies on COVID-19 clinical outcomes.


Subject(s)
COVID-19
SELECTION OF CITATIONS
SEARCH DETAIL